Analysis of the convergence of main indicators for funding healthcare in the EU countries

Nadiya Dubrovina, assoc. prof., CSc., PhD. Bratislava University of Economics and Management professor Lidiya Guryanova, DrSc. PhD student Vira Dubrovina, Simon Kuznets Kharkiv University of Economics, Kharkiv, Ukraine)

Introduction

- Healthcare is one of the important sector in public economy in the EU countries.
- Health of population is a highest value of citizens in the developed democratic countries and the one of the prior target of social policy of the governments in the EU countries (European Commission, 2017).
- The values of **total government expenditure on health** as % of total government expenditure were essentially increased, from **13,32%** for **EU-27** countries in 2000 till **15,35%** in 2017.
- For **EU-28** countries **total government expenditure on health** as % of total government expenditure increased from **13,4%** in 2001 to **14,9%** in 2017.
- In EU-19 (euro area) this indicator changed from 13,36% in 2000 to 15,5% in 2017 (Eurostat, 2020).

Common Policy and Key Factors of Convergence

- The development of the healthcare system in the EU should be considered in the point of common policy and harmonization (European Commission, 2010, 2017, 2019).
- The **common policy of the EU** is focused on the **cohesion and harmonization** across all main spheres and standards in the countries members of the EU.
- Key facts of the economic and social convergence (European Commission, 2019).
- circulation of euro in the EU as currency of the EU;
- role euro area on the example of the EU-19;
- non-euro area income converges upwards towards euro area;
- EU recovers steadily and converges upwards;
- increasing investments and common strategical projects;
- employment policy and creation million new of new jobs;
- normalization of budget deficits, etc.

The purposes of the study and data

- The purposes in this study are
- to argue the background for the joint EU policy in the healthcare funding
- carry out the analysis of the phenomena of convergence of the main indicators for healthcare funding in the EU countries.
- The analysis was based by using econometric models and the database from Eurostat for main indicators for period of 2000-2017.
- total government expenditure on health as % of GDP;
- total government expenditure on health as % of total general government expenditure;
- total government expenditure on health per capita

The dynamics of total government expenditure on health in the EU as % of GDP

• Total government expenditure on health as % of GDP characterizes the government policy in healthcare in the point of economic development

The dynamics of total government expenditure on health in the EU, as % of total government expenditure

 Total government expenditure on health as % of total general government expenditure describes budget policy and social policy of the government in its relation to healthcare

The dynamics of total government expenditure on health in the EU per capita, euro

 Total government expenditure on health per capita shows the level of economic development of the country, well-being and relative value of the expenditure on health per capita, which are much more higher in rich and well-economically developed countries

Regression model

$$\tau_x(t) = b_0 + b_1 \cdot x(t-1) + \varepsilon_t,$$

where

- $\tau_x(t) = \frac{x(t)}{x(t-1)}$ are growth rates of the total government expenditure on health measured as % of GDP,
- x(t) is level of total government expenditure on health as % of GDP for time t ,
- t = 1 for 2000, t = 2 for 2001, etc.,
- b_0 and b_1 are the parameters which need to estimate,
- ε_t are stochastic terms.

Dependence of growth rates of total expenditure on health from their previous levels (measured as total government expenditure on health as % of GDP)

Regression Summary for Dependent Variable: TAU_X_T						
R= 0,14392716 RI= 0,02071503 Adjusted RI= 0,01876426						
F(1,502)=10,619 p<0,00120 Std.Error of estimate: 0,06048						
		St. Err.		St. Err.		
	BETA	of BETA	В	of B	t(502)	p-level
Intercpt			1,047617	0,011861	88,32398	0
X_T	-0,14393	0,044167	-0,00627	0,001923	-3,25867	0,001195

Dependence of growth rates of total expenditure on health from their previous levels (measured as total government expenditure on health as % of total general government expenditure)

Regression Summary for Dependent Variable: TAU_Y_T						
R= 0,13505159 RI= 0,01823893 Adjusted RI= 0,01616771						
F(1,474)=8,8059 p<0,00315 Std.Error of estimate: 0,06252						
		St. Err.		St. Err.		
	BETA	of BETA	В	of B	t(474)	p-level
Intercpt			1,056732	0,015752	67,08364	0
Y_T	-0,13505	0,045511	-0,00344	0,001159	-2,96747	0,003154

Dependence of growth rates of total expenditure on health per capita from their previous levels

Regression Summary for Dependent Variable: TAU_Z_T						
R= 0,27334319 RI= 0,07471650 Adjusted RI= 0,07276442						
F(1,474)=38,275 p<0,00000 Std.Error of estimate: 0,08331						
		St. Err.		St. Err.		
	BETA	of BETA	В	of B	t(474)	p-level
Intercpt			1,08756	0,006519	166,8175	0
Z_T	-0,27334	0,044182	-2,2E-05	3,62E-06	-6,18671	1,33E-09

Robustness

Dependent Variable: TAU_X_T Method: Least Squares Sample: 1 476 Included observations: 476 **HAC standard errors & covariance** (Bartlett kernel, Newey-West fixed bandwidth = 6.0000)

$TAU_X_T=C(1)+C(2)*X_T$

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	1.087560	0.010021	108.5239	0.0000
C(2)	-2.24E-05	4.30E-06	-5.218955	0.0000
		Mean dependent		
R-squared	0.074716	var		1.054869
		S.D. dependent		
Adjusted R-squared	0.072764	var		0.086521
		Akaike info		
S.E. of regression	0.083313	criterion		-2.128222
Sum squared resid	3.290091	Schwarz criterion		-2.110720
		Hannan-Quinn		
Log likelihood	508.5169	criter.		-2.121340
		Durbin-Watson		
F-statistic	38.27543	stat		1.472318
Prob(F-statistic)	0.000000	Wald F-statistic		27.23749
Prob(Wald F-				
statistic)	0.000000			

Wald Test:			
Equation: Untitled			
Test Statistic	Value	df	Probability
t-statistic	-5.218955	474	0.0000
F-statistic	27.23749	(1, 474)	0.0000
Chi-square	27.23749	1	0.0000
Null Hypothesis: C(2)=0			
Null Hypothesis			
Summary:			
Normalized			
Restriction (= 0)		Value	Std. Err.
C(2)		-2.24E-05	4.30E-06

Restrictions are linear in coefficients.

Panel data

Dependent Variable: TAUX? Method: Pooled Least Squares Sample: 2001 2017 Included observations: 17 Number of cross-sections used: 28 Total panel (balanced) observations: 476 White Heteroskedasticity-Consistent Standard Errors & Covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
Χ?	-0,02471	0,003736	-6,61564	0
Fixed Effects				
		Mean		
R-squared	0,210361	dependent var		1,010767
Adjusted R-		S.D.		
squared	0,160898	dependent var		0,063034
S.E. of		Sum squared		
regression	0,05774	resid		1,490279
Durbin-Watson				
stat	2,162747			

Robustness

0.004177

statistic)

Dependent Variable: TAU_Y_T Method: Least Squares Sample: 1 476 Included observations: 476 HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 6.0000)

 $TAU_Y_T=C(1)+C(2)*Y_T$

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	1.046243	0.013984	74.81473	0.0000
C(2)	-0.006070	0.002109	-2.878439	0.0042
		Mean dependent		
R-squared	0.018653	var		1.009819
		S.D. dependent		
Adjusted R-squared	10.016583	var		0.062196
		Akaike info		
S.E. of regression	0.061678	criterion		-2.729579
Sum squared resid	1.803192	Schwarz criterior	1	-2.712077
		Hannan-Quinn		
Log likelihood	651.6399	criter.		-2.722697
-		Durbin-Watson		
F-statistic	9.009741	stat		1.894146
Prob(F-statistic)	0.002827	Wald F-statistic		8.285413
Prob(Wald F-				

Wald Test:			
Equation: Untitled			
Test Statistic	Value	df	Probability
t-statistic	-2.878439	474	0.0042
F-statistic	8.285413	(1, 474)	0.0042
Chi-square	8.285413	1	0.0040
Null Hypothesis: C(2)=0			
Null Hypothesis			
Summary:			
Normalized			
Restriction (= 0)		Value	Std. Err.
C(2)		-0.006070	0.002109

Restrictions are linear in coefficients.

Robustness

Dependent Variable: TAU_Z_T Method: Least Squares Sample: 1 476 Included observations: 476 HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 6.0000)

$TAU_Z_T=C(1)+C(2)*Z_T$

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	1.056732	0.018426	57.34871	0.0000
C(2)	-0.003438	0.001295	-2.654228	0.0082
		Mean		
R-squared	0.018239	dependent var		1.010767
Adjusted R-		S.D. dependent		
squared	0.016168	var		0.063034
		Akaike info		
S.E. of regression	0.062522	criterion		-2.702402
		Schwarz		
Sum squared resid	1.852869	criterion		-2.684901
		Hannan-Quinn		
Log likelihood	645.1718	criter.		-2.695520
		Durbin-Watson		
F-statistic	8.805864	stat		2.261914
Prob(F-statistic)	0.003154	Wald F-statistic		7.044925
Prob(Wald F-				
statistic)	0.008216			

Wald Test:			
Equation: EQ02			
• -			
Test Statistic	Value	df	Probability
t-statistic	-2.654228	474	0.0082
F-statistic	7.044925	(1, 474)	0.0082
Chi-square	7.044925	1	0.0079
Null Hypothesis: C(2)=0			
Null Hypothesis Summary:			
•			
Normalized Restriction $(= 0)$		Value	Std. Err.
(0)			
C(2)		-0.003438	0.001295

Restrictions are linear in coefficients.

Discussion

- test sigma-convergence for the mentioned indicators for the EU countries
- test the hypotheses of conditional convergence, when for certain groups of countries their own tendencies will be observed and these countries will follow them in the long term period
- test convergence for some groups of countries

Conclusion

- For the EU-28 countries, the hypothesis of the existence of absolute convergence is confirmed over the long term period for the main macroeconomic indicators such as:
- TGEH₁ (total government expenditure on health as % of GDP).
- TGEH₂ (total government expenditure on health as % of total general government expenditure)
- and TGEH₃ (total government expenditure on health per capita)
- At the same time, hypotheses about the presence of sigma-convergence and conditional convergence should be tested for individual groups of countries, which may have their own separate paths for the development of health system financing processes

References

- Chen, W. (2013). Does healthcare financing converge? Evidence from eight OECD countries. Int J Health Care Finance Econ 13, 279–300.
- Dubrovina N., Tulai O., Neubauerova, E (2020). Tendencies of funding health care in EU countries: the features and perspectives/ In Monograph "Theoretical and applied aspects of sustainable development". Ed. T. Nestorenko and A. Ostenda. Katowice School of Technology. Katowice. 2020. pp. 12-22.
- Duncan B. (2002). Health policy in the European Union: how it's made and how to influence it. *BMJ (Clinical research ed.)*, *324*(7344), 1027–1030.
- European Commission (2010). Joint Report on Health Systems. Occasional Papers, No. 74.
- European Commission (2017). State of Health in the EU. Companion Report. Luxembourg: Publication Office of the European Union.
- European Commission (2019). Economic and Social Convergence in the EU: key facts. The Commissions Contribution to the leaders Agenda #FutureofEurope#EURoad2Sibiu. European Union.